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SYNTHESIS OF A SIMPLE SHOCK ISOLATOR

By Lucien A. Schmit, Jre and Richard L. Fox

Case Institute of Technology
Cleveland, Ohio

SUMMARY

204!

The simple spiing-mass~demper system shown in Fige 1 is considered
as a shock isolating system. The problem is to determine the spring
stiffness, k, and the damping coefficient, €, for optimum performance.
Specifically this note reports the successful development of a capability
of solving both of the following two problems:

1) The ''rattle space!* is limited by external considerations
and the problem is to choose the spring-damper combination
such that the maximum acceleration is a minimum and such
that the maximum relative displacement is consistent with
the "rattle space'',

2) The ' fragility level ! of the mounted unit is known and the
problem is to choose the spring-damper combination such that
the maximum relative displacement is a minimum while the
maximum acceleration is less than the fragility level of the
unite

The capability reported here solves these two problems when the
shock environment consists of a single shock pulse or -several shock

pulSeS. ﬁ U’T H 0 \2
INTRODUCTION

There are many design problems for which there are numerous
solutions in the sense of fulfilling a given set of requirerents and
specificationse In these problems there is often a criterion such as
weight, cost, serviceability and appearance by which one acceptable
design may be judged better than anothere If this merit criterion can
be expressed as a function of the design parameters the selection of
the best possible design becomes conceivable. In many problems this
optimization may be attacked in an analytical fashion using max-min
techniques. However, in a large class of problems, due to the nature




of the merit function and/or the constraints placed on the system by
the design requirements, it is not feasible or not possible to use
closed form analytical techniques. This may result for example from
the fact that the merit "function!' is a function only in the sense
that it is a trule ! for determining the merit associated with a given
designe In this situation the function may be thought of as a !'black
box ! into which are put the values of the parameters representing a
given design and out of which comes the value of the merit for that
design. The box may contain such things as differential equations,

a modal superposition analysis, an analogue computer and so one. Even
if the merit function is simple, the constraining relations of the
design requirements may be of a nature that precludes the use of an
analytical approach.

Several problems of this type have been solvede These have been

problems for which the techno%ogg 338 been the mechanics of deformable

structures wnder static load'1s423), This note presents the solution
of an elementary problem involving a dynamics technology.

Consider a simple spring-mass~damper system with one degree of
freedom as shown in Fig. l. The base is subjected to an acceleration,
y(t) which is of finite duration and which will be referred to as a
shock pulse, Upon the application of the pulse the mass will experience
an acceleration x(t) and will undergo relative displacement with respect
to the base, z(t) = y(t) = x ().

The absolute maxima of these quantities (x , z_) may be considered
as representative of the response, and the spﬁﬁg-dlanmper combination
thought of as a shock isolator. The mass may represent a unit to be
protecteds Two problems may now be statede

(1) If the 'rattle ! space (z,) is limited by external con=
siderations, the problem ig to choose the spring-damper combination
which provides the least while resulting in a z,; consistent with
the available 'rattle '* space,

(2) The Mfragility level"', or maximum endurable acceleration
of the unit, is known and the problem is to choose the spring-damper
combination providing the least possible wvalue of 2z, thus, making it
possible to mount the system in the smallest possible spaces

It is realized that does not totally characterize the damaging
capability of the shock felt by the unit since its time history is
sometimes quite significant in this respecte However, in a large
number of caseg the sensitive elements of the unit are sufficiently
rigid so that X, indeed tells how well it is protected.




In many cases the environment from which the package is to be
protected contains several different shocks ¥;(t), ¥2(t), eees ¥n(t),
all of which may be assumed to be applied with the system at rest.
For each of these there will be a z, and ax_ from which we can

define the maxima: By T
X, = max [xm s Xy s eees X ] (1)
. . 1 . 2 . n
= max [z s Z_ 3y eeey Z ] (2)
m’ “m, m,

With these definitions the two problems stated above remain
essentially the same only now there is a multiplicity of load condi=-
tions and z, and xp are replaced by Z, and X, respectively. It should
be noted that X and are functions of the design parameters k and
Cy 1ecey Xp = and Z = Z, (k,c) (assuming the mass specified
and the pulse set a351cned).

In this note the examples are primarily of Type 1 in which the
acceleration is to be minimized. This choice is purely arbitrary since
arguments for the existence of both problems can be advanced. The choice,
however, has been fortunate because one of the primary aims of the work
was to discover what kinds of poorly behaved merit functions existed and
to develop techniques, if possible to handle them. As will be seen
later the Xm (kyc) as a merit function is much more '!'pathological
than is Z - (kyc)o

Much work in engineering synthesis has dealt with weight, a merit
function that is independent of the system loads. The present problem
has the property that X (kyc) is, in general, the result of one condi-
tion (pulse) for a glven k and c, but for a different k and c it may be
the result of a different pulse. It was expected that this would give
rise to a behavior of X (k,c) that might be difficult to handle by
existing techniques.

Another reason for choosing this problem was to demonstrate the
feasibility of using a dynamics technology in a synthesis provlem and
to discover what difficulties might be inherent in such an application.
Usually a dynamic analysis is considered solved if the time response of
the system is obtained. However, in most cases only certain aspects of
the response history are significant to the design problem. For example,
as discussed above certain maxima may be of interest. In other situations,
the important factor may be the number of times a given quantity exceeds
some number (as in fatigue), or the length of time required for damping
to a given level, and so on. In the conventional design process the
response is obtained and more or less quantitative judgements are made
regarding its acceptability. In a systematic synthesis these judgements
must be formalized into explicit decisionse.
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SYMBOLS

a constant of integration

the magnitude of the ith square pulse

constants of integration

a constant of integration

a constant

the Heaviside step function

constants of integration

an integer

a constant

a constant of integration

a vector from 7, to Vi+2

a constant of integration

the duration of the i’" square pulse

a constant

a design vector; i=1 represents the current design

a constant

the greatest of x
m,
-1

the greatest of g
My

the damping coefficient

the spring stiffness

the mass

a move vector

the damping ratio, c/2m




to the time at which a maxirmum occurs

b'd the absolute displacement of the mass

ig' the maximum of %(t) due to the i™ pulse

& . the absolute displacement of the base

5; the ith shock pulse

; the relative displacement, y=x

z the maximum of z(t) due to the ith pulse

z(T),é(T) the values of z(t),é(t) for t = T, the end of
the pulse

ayBsYs® constants of integration

@ undamped circular frequency %

R 2 2
coA damped circular frequency on - n
wod overdamped pseudo frequency n =
v grad ¢
A® a finite change in ¢
= approximately equals

SYINTHESIS FORMULATION
The Design Parameter Space

In synthesis problems it is often quite useful to think of a
cartesian space, the coordinates axes of which are the design parameters
(see Fige 2)e Thus, each point in the space represents a distinct
designe In a given design problem there will be points which represent
acceptable or feasible designs and points which are unacceptable. Some
designs are ruled out because of natural or imposed limits on the design
parameters themselves; for example, negative spring constants are ruled
out or there may be a requirement that damping be sub~-critical in a



dynamics problem, or dimensional limitations in a structural problem.
These constraints, which do not involve the response of the system to
the applied loads, will be called side constraintse.

Some designs will be acceptable in terms of the side constraints
but unacceptable in terms of performance, for example, a structural
design that displaces too much or simply collapses, or a dynamics design
where some response characteristic is unacceptable. These constraints
will be called behavior constraints,.

*

The design space can now be thought of as divided into two sub=sets :
the acceptable designs and the unacceptable designse The surface* dividing
them is called the composite constraint surfacee

Associated with each acceptable point is a value of the merit
function. For a single value of the merit function the points form a
surface. The solution to the optimization problem can then be thought
of as that acceptable design (or those designs) lying on the merit
surface having the best merit value. In most problems solved so far,
this design has been on the composite constraint surface, at a point
which, in a rough way, can be thought of as a tangency point between
the best merit surface and the composite constraint surface. This,
however, is not necessarily the case; the best design may be at an
interior point of the acceptable region in some problem.

About the Analysis

The analysis of the spring-mass~damper system is quite simple
and uncomplicated for ordinary use but when it is to be used in a
synthesis, some effort must be expended to get it into a usable forme.**

#* The acceptable set may be composed of several disjoint sets. It might
in some instances contain one point in which case the problem is to
find that point and optimization is no longer a question., The accept=-
able set may be a null set which, of course, means that the problem
has no solution,

+ In the case of N design parameters, the surface is the totality of
points satisfying some F(Xy, Xzy X5 eeey X,) = O which is a sub-
space C, 7 and divides the design space into two sub-sets: those points
for which' F < 0 and those points for which F > 0. In this sense it is
a surface; it is not a two dimensional object but an n -1 dimensional
object, which may or may not be disjoint,

++ See Appendix A for detailse




The differential equation of the system is:
TTD.C.'(' C(J.C-&) + k(x-—y) =

taking z = (y - x):

.o c ? k
y - 2 -;.n.z-r_nz 0
or
c k -
z+ -z + -z = ?(t)

with initial conditions:

z(0) = O, 2(0) = 0

Corresponding to each pulse, y (t) there will be a z (t) from which x (t)
can be obtainede

For the actual problem only square pulses with different durations
and magnitudes were used (Fige 3)e The reason for doing this instead of
having several different shaped pulses was mainly the exploratory nature

of the investigation. The use of the square pulses adequately illustrates
the salient features of the problems

Using the Heaviside step function, H(t), the equation can be written:

. c . k
?i RN B, (H(t) - H(t-’I‘i)) s

i =l, 2’ sseg II

where Bi and Ti are the magnitude and duration of the ith pulseq

[ ]

The relative displacement maxima occurs where z.(t) = O, This is
true whether the maximum occurs during the pulse, just at the end of the
pulse, or after it has ceased. So finding z, is a matter of taking the
derivative of the solution for the response ™ during and after the pulse,
solving for the ty's for which zl(t ) =0, substituting the t,'s into the
response equatlons. and comparing these maxima for the max1max or greatest
maximum for the ith pulse, Then in order to find Z, the Zmy must be
compared (see equation (2) page 3 ).



.o The absolute acceleration, xml is a somewhat different matter since

X3 (t) is discontinuous at the end ~of the square pulse which means that

the maximum acceleration may occur at the end of the pulse without having
xl(T ) = 0. In finding the maximum of the acceleration, Hg 9 the accelera-
tion peaks during the pulse and after the pulse must also be Compared with
xl(T e These also must be compared to find X (see equation (1) page 3 o

Synthe sis

The basic method of synthesis chosen for this problem was the
gradient steep descent---alternate step method. This technique is shown
diagramatically in Fige L and by a basic flow chart in Fige Se

It cons1sto of moving from an initial acceptable point in the
direction®™ of the gradient to a better design some finite distance awaye.
This process is repeated until a constraint is encountered which prevents
further moves in the gradient direction. Then an alternate step is taken
which is a move more or less along the constant merit curve (or surface).
After the alternate step a free (unconstrained) point should have been
obtained from which a steep descent can be made, The process is con-
tinued until no move can be made by either mode at which time an optimum
is said to be achieved*. The reasoning behind this technique is that
since the gradient points in the direction of greatest change it is the
best direction to move to improve the designe. If a move cannot be made
in the best direction then a move is made which at least does not decrease
the merit of the designe

In principle this method is quite straightforward, however, it has
a number of difficult pointse. One of the first of these to be encountered
is the tacit assumption that one can move with ease along a constant merit
curve. This difficulty is characterized by the fact that the merit is an
involved rule for determining the merit associated with a given designe
This means that moves along the merit curves require, in general, a diffi-
cult iteration process.

Such a drawback is even more severe in an alternative method known
as the constrained gradient technique. Since a move in the gradient
direction cannot generally be made from a bound point this method seeks to
move in the next best direction, the projection of the gradient on the
constrainte This method is illustrated in Figz. 6. The reason it is more

* In this problem in the direction of the gradient but in the negative
sense since the function is to be minimized.

+ For the question of relative minima, see the example shown in Fig. 23




severe for this method is that the projecting must be done by iteration
and the projection must be quite exact for the method to work. Also,
the iteration must be carried to comnletion before it can be determined
if the move is of a usable length or if it must be shortened (Fige 7)e
A lesser degree of accuracy is required for the alternate step method as
will be seen later. These difficulties, coupled with the fact that in
many problems the constraint surface is more irregular than the merit
surfaces, made the alternate step system seem the more promisinge®

Another difficulty of the gradient-alternate siep method is that
with the !'black box ' type of function the gradient cannot be cobtained
in a closed analytical form. This is surmounted simply by using a
finite difference method of numerically computing the gradiente.

From the definition of the gradient of a function of two variables:

1im
X + 8 x,y) = @lx A Kyy + 8 - p(x,v) ~
V‘P(XsY) = 2};‘:8 o ,QAV}){ @ ,Y) T+ o 27 = g_') o ) 3

The partial derivatives can be approximated by computing:

o(x + 8x,y) = o(x,y)
AX :

and

o(x,7 + AY) - olx,y)
AY

for smaller and smaller Ax and Ay until their change from the previous
calculation is less than some desired amount.

* There is another, perhaps more serious, theoretical deficiency of the
constrained gradient method as it is often statede This is that once a
section of the composite constraint surface is encountered, it may not
be left. However, in general there is no assurance that the final
true optimm design will lie on this constraint or any of the others as
they are encountered in order. This point is often overlooked (for
example see refs. h)e If the composite constraint surface can be treated
as one function then the method is theoretically correct, but this is
usually quite difficult, if not impossible.
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There is no rigorous assurance that this process will produce the
true components of the gradient but it usually does. When it does not,
other steps must be taken which will be discussed subsequently.

After the components of the gradient are determined, there is still

the question of how far to move in the gradient (actually the normal)
direction. This is done by using the fact that:

ve ° dr = d9
where for two variables:

V(,podrza—.‘-p-d}c-(-_a__‘_p.dy

X J

Sinog the move is to be made in the direction of greatest decrease of
¢, dr should be along the normal. This requires that

LX)
9 . 3y
ax T T2

d X

therefore, for small moves A r along the normal:

3¢
Ax = ~pe (a(p?;i o7
X 3y

X
Ay =- B9 P
D+ &

where A ¢ 1is the desired decrease in ¢ for the move AF .
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Since moves are made in finite steps along the gradient direction
some difficulties are encountered in a gradient field that changes
radically from point to pointe If the move in the gradient direction
yielés a design point of worse merit than the point being moved from,
the move can be shortened until it yields a point of better merit. This
situation is illustrated in Fig. 8a. For shortening a halving process
has been found to work satisfactorily.

In the "trough!' situation (which actually occurs in the present
problem) shown in Fig. 8a , a zigzagging of the moves may occur as in
Fige b o« This zigzag is really not a failure of the method since it
continues to trend in the correct direction, but it is extremely in-
efficients It is characterized by a small angle between two successive
gradient move vectors and can thus be detected by computing that angle
or its cosines

This computation can be performed quite simply by !'remembering !!
the last three designs V,, Vz, V,e The move vectors are then:

mo= 7, - va
m, =V, -7

where Vl is the most recent design (see Fige 9 )e
It was decided beforehand that an angle of less than 90O was an

undesirable amount of zigzag (other angles may, of course, be selected).
This criterion requires:

il - 1oyl -

which is a simple calculation,

It can be noted in Fig, 9 that a_vector from the oldest design of
the three to the newest (or R = V1 - V ) is roughly parallel to the
gradient that would be obtained dlrectly in the middle of the 'ttrough !,
This then may be an efficient direction to move.

These ideas were incorporated into the synthesis program by first
providing a test for zigzag by ‘''remembering '' designs and then testing
the dot products of the move vectors. If zigzagging occurs the next
move tried is T, + R; if this is successful (that is, if the merit
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improves) then a move ¥, + 2R is tried then 7, + [R and so on until either
the direction fails to improve the design or a constraint is encountered.
Whenever the direction fails to improve the design, including the first
move, it is abandoned and a gradient move is takene

It can be observed that this technique is really an attempt to
approximate the average gragient and not actually an abandonment of
the gradient steep descent.

In the problem of the shock isolator if X, is taken as the merit
function, the merit curves for some pulse sets‘'will exhibit a property
we will call a 'cusp''se As was mentioned before, in different portions
of the design space X, will be the result of response maxima of different
pulses, This shift% will often be accomplished by an abrupt change in
direction and magnitude of the gradient with, technically, the gradier:
being undefined at the cusp. This situation is illustrated in Fige. 10,

This is one case where the finite difference method for determining
the gradient breaks down, (as, of course, do 21l methods because it doesn't
exist). The gradient as computed usually points across the cusp and thus
no move to improve the design can be made in its direction.

The situation is easy to detect because no move can be made and all
progress stopse The solution to the difficulty is somewhat similar to
that of the zigzags Once progress stops a point on the cusp has been
encountered; if a neighboring point on the cusp can be found, then these
two points can be used to give a line running, at least for a distance,
along the cusp ! groove 1!,

This second point is easy to get since all gradients near this
kind of a cusp are directed toward the cusp ''groove ''s So several
points about the first cusp point are tried in a more or less random
fashion until one which is merely in the acceptable region is found,
Gradient moves are then made from this point which usuvally lead back
to the !'groove "' and a cessation of all progress. The vector between
these two points is then used for the next move. The sense of the
vector is obtained by considering which of the two cusp points has the
better merite The procedure is shown pictorially in Fige 1le

This method is again an approximation to what might be thought of
intuitively as the gradient of the cusp (if this offends the mathematical
sensibilities, it is at least a vector in the direction we want to go)e

* A slig?t%y different form of this method has been used previously by
Fedder(5> o
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The previously mentioned difficulty of moving along the constant
merit curve was handled in the following manner. Since the normal
(gradient direction) to the curve can be computed, its components may
be used to give the tangent to the curve. In a typical situation one
direction along this tangent leads into the unacceptable region and the
other away from it (Fig. 12). If the curve were very flat then a move
in the latter direction would be a move along the constant merit curve,
For most cases, however, the curve is not so well behaved. If the
curve is concave (Fig. 13), such a move will usually lead to a point of
better merit than the bound point and there is no reason to attempt to
find the curve of the bound point. After such a move gradient moves
can be resumed until a constraint is again encountered,

If the curve is convex, (Fig. 1l a,b,c) the tangent move will lead
to a point of worse merit than the bound point. In order to find the
merit curve, small moves perpendicular to the tangent can be made until
one of three things occur,. 1) A constraint is encountered before the
merit curve is passed through (Fig. 1lba). This calls for shortening
the tangent move and trying again. 2) Moves in the perpendicular
direction show a reduced merit (Fig. 1Ub)e This also calls for
shortening the tangent and trying again. 3) The merit curve of the
bound point is passed through or hit exactly (very rare). This is
considered a success and gradient moves are made from this point (Fig.

1L c).

It is easy to see that this process will seldom result in a move
which is truly along the merit curve, If the steps perpendicular to
the tangent are quite small the point will be close to, but seldom on
the curve., On the other hand, there seems to be no strong reason to
ask for such precision; what really is accomplished is a move which gets
" jnside! the convex merit curve. The complete flow diagram and
computer listing for the method described above is given in ref. 6.

EXAMPLIE SYNTHESES

This section presents several illustrative cases of the operation
of the synthesis program described above, These are presented graphically
as synthesis paths superimposed on the family of merit curves and con-
straints.

The example problems presented are of two typesy Find the spring
stiffness k and damping coefficient ¢ such that the system will isolate
a mass m from a set of base induced acceleration shocks in the form of
square pulses having a magnitude B;j and a duration T;, i = 1,2,...n.
The shock protection is to be such that

Type 1 problem: the maximum of the absolute acceleration maxima
is to be minimized while having the maximum of the magnitudes of
the relative displacement maxima less than a certain value,
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Type 2 problem: the maximum of the magnitudes of the relative
displacement maxima is to be minimized while having the maximum
of the absolute acceleration maxima less than a certain value,

In addition there may in some cases be limits on the range of values
which k and ¢ may take,

Table T gives the case designation and figure number showing the
synthesis path, the identification of the pulse set involved, the con=-
straints placed upon the problem, and the initial and final values of
ky ¢ and the merit.

Table I lists the magnitude and duration of each pulse for the
pulse sets used in these examples,

In viewing Figs. 15, 16 and 18-25 it should be borne in mind
that the merit curves and behavior constraint curves are shown only
for the purpose of demonstrating the modes of operation of the syn=~
thesis programe 1In practice they would not be known; indeed, if they
were easily obtainable, the problem would reduce to one of plotting
and the selection of the optimum could be done by inspection,.

The curves could be obtained only by !''gridding '' the design
spaces This required on the average about ten times as much computer
time as did the actual synthesis paths., In addition, the grids were
run after the synthesis had been completed so that the pertinent region
of the space was already known,

In the illustrations which follow, gradient moves which should
be normal to the merit curves, will not appear to be so, This is duwe
to the severe distortion of the scales which was necessary for clarity,
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Set I
B, = 2000 in/sec” T, = 0,001 sec,
B, = 200 in/sec” T, = 0.01 sec.
B, = 2000 in/sec” T, = 0.0l sec.
Set ITI
B, = 2000 in/sec’ T, = 0.0l sec.
B, = 1000 in/sec” T, = 0.05 sec.
TABLE IT
PULSE SETS

Pulse Set I contains a dominant pulse (Bs,T;) which rules the behavior
of the system in the entire region of interest. In other words the
syntheses depicted in Figs. 15 and 16 would be unaffected by the omission
of pulses 1 and 2,

Figures 15 and 16 show two paths, each from a different starting
design, for the solution of the same problem, In Fig. 15 the zigzag
effect is quite in evidence. The moves from about k = 990 to 810, from
800 to 6h0, 620 to 580 and from 560 to 510 are all gradient approximate
moves resulting from the zigmag feature of the program.

The designs indicated by small circles in the drawings are points
from which gradient moves were taken; other points were checked for
merit and/or constraints in the course of the synthesis but the points
circled required about ten times as much computational time because of
the finite difference gradient calculation, as did the points merely
checked,

The synthesis path shown in Fig. 16 does not encounter the zigzag
simply because the initial design and subsequent path do not cause it to
pass through the region of rapidly changing gradient,




17

The solution for the problem shown in Figse 15 and 16 is a true
tangency between the acceleration merit curves and the displacement
constraint. As will be seen in later examples, the imposition of side
constraints can change this situation.

Figures 18 through 23 deal with pulse Set II in which there is not
a dominant pulse which can be said a priori to control the designe

The wave like form of the merit curves in the subsequent figures
may seem surprising---for a spring stiffness of about 700, for example,
the addition of damping up to about 15 improves the design, further
damping makes the design worse up to about 55 and then damping improves
the design again up to 72 At this point the addition of damping
suddenly causes the design to deteriorate and does so from C = 72 on upe
The reason for this chain of events can be seen in Fig. 17 in which are
plotted the actual acceleration response curves of the system for various
values of dampinge

The optimum for the problem shown in Figs. 18 and 19 is again a
true tangency. The path for Fig. 18 involves a few zigzags followed
by an extraordinarily long approximate move. This long approximate
move will occur when the R happens to be just righte

The synthesis path shown in Fige. 19 involves the cusp move.
The t'groove " in this problem is fairly straight and therefore the
first cusp direction suffices to move the design to a region where there
is no further difficulty with the cuspe.

Figure 20 shows a problem which is similar to the one shown in
Figse 18 and 19 but whereas the latter had no active side constraint
the former does, By moving the upper bound on ¢ from 100 to 30 the
solution has changed from a true tangency point to a point of inter-
section between constraints. Since the acoeptable region is so
restricted in this problem a second path is not shown.

Figures 21 and 22 show the problem with a more severe restriction
on displacement and no active side constraintse This change causes
the solution to lie at a cusp point. This means that the pulses
jointly control the optimum designe.

It was observed in the above figures that the problem would have
a relative minimum if a lower bound were placed on the spring stiff-
ness above K = j00, This situation is shown in Fige 23 The true
optimum occurs at K = 65040, C = 20,7 with a merit of 1008,1 and is
due to path Ae Path B yields a relative minimum of 1066,8.
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This somewhat artificially induced relative minimum problem can
be solved (i.ce, the absolute minimum found) by using multiple paths--
the degree of confidence increasing with the number of paths which lead
to the same minimum.

Figures 2L and 25 are the reverse, so to speak, of the problem
shown in Fige 20 In these the maxirum relative displacement is to be
minimized and a constraint is placed on the acceleration (type 2 problem).
The acceleration limit chosen for Figse. 2l and 25 is the value of the
minimum found in Fige. 20,

As expected, the minimum relative displacement found by the
syntheses shown in FigsSe 2l and 25 is the same as the upper limit placed
on the displacement for Fige 20,

There is nothing really profound in this result except that due
to the relative simplicity of displacement as a merit function it
provides a quick method of making ‘t'confidence checks?!! after the
original problem has been run onces

CONCLUSIONS

This work has successfully demonstrated the feasibility of applying
the synthesis concept to a problem in which the technology is dynamicse
At the outset it was clear that if merit and constraint ¥rules ! could
be identified, problems in dynamics could be dealt with from the design
parameter space viewpoint, However, there were two general areas which
required investigationd (1) The practical question of explicit expres-
sion of the salient features of a dynamic analysis needed exploration.
(2) The properties of merit and constraint functions required by the
present ideas of synthesis were in question. In other words, it was not
known if these functions were single wvalued, continuous, and without
regions of zero gradient,

The investigation of these questions has lead to the development of
a capability to optimize a two parameter dynamics problems Specifically,
the problem solved is:

Given a single-degree-~of-freedom, spring~damper mass system to the
base of which are applied n square pulses (each applied with the system
at rest) of different magnitudes and/or duration, find the spring-damper
combination which, within upper and lower  bounds on stiffener and damping:

1) Causes the mass to experience the least maximum absolute
acceleration due to any pulse while providing a maximum
relative displacement between the mass and the base less
than a prescribed value,
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or

2) causes the least maximum relative displacement while providing
a maximum absolute acceleration of the mass less than a pre=
scribed value,

The program requires as inputs:

mass

the value of the behavior constraint (i.e., displacement
or acceleration for problems 1 and 2, respectively)

an initial acceptable design

three move increment sizes

the constraint tolerance

the zigzag angle criterion

the tolerance for the gradient routine
the pulse data

design parameter boundse.

Due to the variety of Mpathological ' features which this problem
presented, it is felt that the capability developed to cope with them will
serve to optimize a very large class of general two dimensional problems.
The development of techniques for handling these unusual features has been
an important result of this work.

The feature of a completely bounded acceptable region (as shown in
Figse 2Ly and 25) has not always been expecteds Due to the low dimensionality
of the problem, it was not necessary to deal with this in a formal way,
however, its exposure has lead to some new thoughts on the question of
finding an initial designe One such thought is the idea of temporarily
defining the constraining behavior function as a pseudo merit functione
Then choosing an initial design which satisfies the design parameter bounds,
running the synthesis program until this pseudo merit function is below the
constraining values The resulting design will then lie inside the bounded
acceptable region.

The other unusual features were anomalies of the gradient field of
the merit functione The rapidly changing but continuous gradient field
which causes the zigzagging of gradient moves was dealt with in a manner
which attempts, in a sense, to move along the center line of the !'trough "
of the function. The discontinuous gradient field caused by the changing
of dominance from one pulse to another was dealt with by a similar method.
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The recognition and solution of these situations, when they occur,
has led to the development of methods which involve an elementary sort of
learning process, The program is provided with the capacity to remember
part of the history of the design path in which it is currently involved.
Tt then evaluates this Yexperience!' and makes decisions based upon its
evaluation. Admittedly this memory is quite short and the decision process
is fairly rudimentary. Any experience gained in one problem is currently
carried over to the next only by the operator of the program. The idea
of providing the capacity for gaining experience in synthesis problems
opens a wide area of investigation in which automated redesign decisions
can be made with the benefit of more information than just that available
at the current designe.

The scope of the current capability can be broadened by including
the analysis of more types of pulses, In fact, a set of arbitrary pulses
could be handled by providing a routine for numerically integrating the
Duhamel integral and selecting the maxima from the resulting response.
This would require a much longer analysis time than does the current
method but would be accompanied by an attendant increment in generality.

Short of such generality,routines can be constructed which could
analyge pulses such as semi-sine, ramp, over-pressure, etc. The synthesis
could then handle a set of applied shocks which contained a variety of
formse

Another direction in which generality can be gained is in an increase
in dimensionality. The single degree of freedom systems may have more
than two design parameters. For example, the spring may be nonlinear of
the form F = k; x + kj x| x| or be piecewise linear as with a snubbing
device. The damper may also be nonlinear requiring more than one parameter
to characterize its actione




21
APPENDIX A
The differential equation of the system shown in Figure 1 is:

m = k (y=x) +c (y-x%) (A1)

where for the square pulses considered:

Yi(t) = By 0 <t < Ty
i = 1, 2, oee N
= 0 T;<t <+ (42)
Taking:
k c

y=-X = Zy ﬁ = () ’ x—n = 2n
then:

(Y] [ 2 LX ]

Z,i + 2n 2, + o) 7, = Yi(t) (A3)

The desired gquantities are:

Zmi = max l Zi('b) | i= 1, 2’ ese N
;'.c'mi = maxl}%.i(t)| i =1, 2y eee N

In what follows the subscript i will be droppede It should be kept
in mind however, that for synthesis purposes what is ultimately needed are
the values of Xm and Zm'

Zm = max [ma.x‘ Zl(t)| 9 eee g MAX I Zn(t) I]

}?m = max[maxl::c.l(t)l, ees MAX |}:C.n(‘b) |:}

The solution of (A43) depends upon the relative values of R
and ne
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Subcritical Damping (n <m°), t<T

-nt . B
z(t) =e (C1 cos w, b + C, sin mAt) +m_‘°:
o
where
0?2 = 2 _ nz
A s
Cl and C2 may be determined from:
z(0) = 0
2(0) = 0
which results in:
-nt
z(t) --Bez.(cosmt-kg-sinwt)-l-l
) A mA A coz
o] o
. Bow 2
a(t) = — e (14 Z)sine, t
® w2 A
o A
e Boy  an n>
z2(t) - - e 1+ —-;)(mAcoscot-nsinwt)
. ® © A A
o] A
For the maxima of z:
z(to) = 0
B w -nt 2
A o ° (1+25)sine, t, = 0
© w °
o) A
sin oaA to = 0
Nn
t. = 0, _ﬂ__, eos — < T
o @, @, =

(ak)

(45)

(46)

(A7)

(48)

(49)

(a10)




where T is the duration of the pulse,
The relation (A10) indicates:

n
2 2T

in order that a maximum may occur during the pulsee

Substituting (A10) into (A6)

N+l
(6 = Z[1e ) o ] (a12)

w
o

which is greatest for N= 1

-~ Bz
®
A L o 1+e B (A12)
“
n
t 2T, 9 27
For the maxima of x(t), % <T; from (A8) and the fact that:
x(t) = y(t) - az(t)
. B wA nz =-nt
X = B = = [(1+ —-E)sin‘(wAt-i-w)]e (a13)
. o @
A
®
where ¢ = = ta.n-l TA °
X (t,)) = 0
o o0 B mA n2 mt
= e \ - .
J'c (t) 5 (1 +m = e [mA cos (aoAt + @)= n sin (mAth)]

(a1l)



2k

0O = W

08 (wA t + @) - n sin (wA b, o+ 9)

W
2 tan™t (—f—)

o} (DA

Substituting into (A13)

B w 2 W w - nt
o A n . -1 A -1 A o]
x(to) = B~ — (1 + —) sin (2 tan - - tan -n—)e
. o mA
(a16)
which reduces to
. - nto
gm = B[1+ e ]to <T (417)

However, the maximum may occur at t = T in cases where x (7Y £ ©
because ;c'(t) is discontinuous at T (see Fige 17)s This 'is not true of

z(t) because é(t) is continuous at Te

Subcritical Damping t+ > T

-nt?

z(t!) = e (K1 cos @,t! + K, sin t1) (a18)

A A
where £t = t! + To

K, and Ka may be determined from:

z2(T) = = -25 e 0T (cos ©,T + 2~ sin ®,T) + B (419)
. A ) A 2
w A w
o o
. Baw 2
2(1) = —& ™ (1 4+2) sin w, T (420)
® @
) o

which come from (A6), (A7).




25

This results in:

Adopting the notation

K, = 2(T) (A21)
. z(1) (T)
K, E""%AEZ_— (a22)
G = 2nz(T) + a)oz z(T) (423)
(2n° - ©]) z(T) +n o.): 2(T)
Q = = (a2L)
A

and dropping the primes on t (i.e., considering this a new problem with
new initial conditions)

z(t)

z(t)

2(t)

For the maxima

e b \: z(T) cos mAt-n- (Z(T) ;Anz(T) ) sin @y t ] (A25)

n é(T) + cooa z(T)

e 0t [ z'(T) cos mAt-( N ) sin mAt]
(a26)
- x(t) = e-nt (Q sin o)At - G cos wAT) (a27)

of zg t » T:

;5(1:0) = 0
. naz(T) + o ° 2(1)
0 = z(T) cos w, b, - ( o ) sin @, by (428)
_ é(T) ©
& - z%; tan™ A ] (429)

nz(T) + moz z(T)
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m A o mA ’ A
(A30)
w, T
A < 1
n —

When 1 > 0—-)—’-‘-— the maxima of z that occur during 0< t <€ T will be

T
A T

greater than or equal to the maxima for t > T, If -‘L— € 1 then

the maximum occurs for t > T.

If n = 0 (A30) reduces to

w T w, T
2B . 0 A
R e e ol S (a31)
0

For the maxima of :'c', t > T:

X (to) = 0

.%E(t) - - o™t [(mAQ + nG) cos @t + (wAG - nQ) sin @) t]

A
(a32)
0 = .(mAQ + nG) cos ®, By = (nQ - coAG) sin @, t_ (A33)
1 @, Q+ nG
to"—m;'ban [n————Q_wG] (A3Ll-)
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If to from equation (A3L) is less than zero, its value must be adjusted
by the addition of

©p
%

.. -n o
}.Cm = -6 [Q sin @y t, = G cos o, to] (a35)

w, T
A

The acceleration at the end of the pulse from equation (Al3) is:

o B “p n° -nT
i) =3 -2 [@+2)sm o1, +0)] (436)
o »
A
Ifn=0:
. on
}_{m = 2B sin ——, t>T7 (A37)
Xm = 2B, t, < T, 0, 2 T (438)
Critical Damping (n = mo) t < T
2(t) = (a+pt)e™ + 2 (439)
%
2(t) = e™b (B -na -~npt) (ALO)
a and B may be determined from:
z(0) = 0

z(0) = 0
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- B - B
a - T2 )
W n
o]
B B
g [ S E—— - - }1..._
o
Therefore:
a(t) = 2 [1-@ont) ™ ] (al1)
n
° -nt
z(t) = Bt e (AL2)

Equation (Ah2) shows that no maximum of z (t) may occur during 0 <t < Te

For the maxima of x t <T

X(t) = B-B e (1 - nt) (Al3)

X(t) =-3 [0 e w2 n ™ (AbL)

0 = n°t, e-nt° -~ 2n e—nJGo (ALS)

t, = % < T (AL6)

5§'m = B[l - (- 2)] = 1,1353LB (ALT)
z T

Critical Damping & > T

2(b1) = (y + 6 t1) e (AL8)

¥ and § may be obtained from the initial conditions:
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2(T) = % [1 - (1 +n01) ™7 ] (aL9)
2(T) = Br el (450)
y = 2(7) (451)
5 = z(T) = nz(T) (452)

From which (dropping the primes on t):

2(8) = {a(0) + [2(0) + ma(m) Js } ™ (a53)

21) = {20 - [n2(0) + 0% (1)] 8} ™ (a5L)

28) =-4(8) = {{n®20) +n D]t = [20a(0) + n*x(1) [} e

(455)
For the maximum 2z :
0 = &(1) ~ [nz(m) + n%2(D)] %,
g = 2D - (456)
° nz(T) + n"z(T)
-nt
7z = % (1-eT) e o (457)

n
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For the maximum of x e

X = - gt {[ 2 nzé(T) + naé(T)]— [na.'::(T) + nhz(T)]t + [nz.v:(T) + naz(T)] }

(a58)
0 =3z(T) + 2n a(T) - [n z(T) + nzz(T)] T, (459)
¢ = 32(1) +2n 2(7) (a60)
°© (1) +n°z(T)
i - | ™ [n 3(m) +n%(n)] | (461)

The acceleration at the end of the pulse is:

].C.(T) = = {[ nzé(T) + nsz(’l‘)] T - [2n é(T) + nzz(T)]} e 0T
) (a62)

Overdamped (n > mo), 0O<t < T

z(t) = Ry (A cos w,q t + D sinh modt) + —B-5 (A63)
w

0
where s

A and D may be determined from:
z2(0) = z(0) = 0

B

w

[}

D = - 2B (a6h)
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Then
z(t) = 2 {1- o b [coshco t + -2 sinhow .t ]} (A65)
2 od w od
& od
o
. ~ 2 w . B
z(t) = et [(n B2 - °d2 )sinhwod‘b] (466)
wod C°o mo
2(t) = Bt [w coshw .+ =~ n sinh o t] (a67)
X 4 od od od
x = B = z(t) (468)
-nt
o0 e B e 2 2 .
= - ry [(n o ) sinh wogt = 2n @  cosh modt]
(A69)
For the maximum of z(t):
0O = sinh mod to
which indicates that z(t) has no maximum 0 < t < Te
For the maximum of x(t) :
2 2 )
0 = (n + o g ) sinh ©oq t, = 2n @, cosh @, ‘bo (A70)
2n @04
—X— = tamho  t < 1 (a71)
n” + o
=1 2n w
g, = 2 (2d ) <7 (A72)
od n +ow
od
2n mod
If - 2 1l no maximum occurs for t < T
n° +w

od
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The acceleration at the end of the pulse:

):('(T) = B {1 -% [mod cosh® o T = n sinh e, T]} (a73)

Overdamped t+ > T

z(t1) = o nt! (S cosh w,qs8' + R sinh modt') (A7L)

d

For the initial condition:

z(T) = (:B—g- {1 - eI [cosh WoqT * ;n_ sinh @ . T ] } (A75)

o od
. _ 2 w . B
i) = e [(BEg - M) sima 1 ] (a76)
mod mo wo
S = 2(T)
R o= z(T) 0-: nz(T) (A78)
od

from which (again dropping the primes on t):

z(t)

¢ b [Z(T) cosh ot + _z_(__’ll_)_(;:_c;z}_g(_T) sinh a)odt]
(a79)

o) = it {... (moz z(T) + né(T)

o ) sinh woq b+ z(T) cosh wodt}

(a80)

2(t) = = %(t) = e [v sinh @t = W cosh o, t] (481)
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Where
(2 n® - woz) é(T) +n moz z(T)
mod
Wo= o 2(T) + 2n (1) (483)
For the maximum of 2z :
z (t) = 0
® z:(T)
od = tanhw . t < 1 (a8lL)

moz z(T) + né(T) od "o

- [ wyq 2(T) ]

t, = =— tanh S : (485)
od @, z(T) + nz(T)
Dog é(T)
It 5 = > 1 there is no maximum for t > T
@, z(T) + nz(T)
For the maximum of x :
®0g V + W
nv + o . W = tanh ®oq 1"o (486)

od

osodV + W

1 -l
to = ‘*To—d tanh [n——————-—-ﬁ—v o (A87)
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Figure 5. Basic Flow Diagram for Steep Descent - Alternate Step.
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Figure 14,

Tangent Possibilities.
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Figure 19, Design Path, Case D
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Figure 21, Design Path, Case F.
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